Slider-Pinning Rigidity: a Maxwell-Laman-Type Theorem

نویسندگان

  • Ileana Streinu
  • Louis Theran
چکیده

We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley’s direction networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Slider-Pinning Problem

A Laman mechanism is a flexible planar bar-and-joint framework with m ≤ 2n− 3 edges and exactly k = 2n−m internal degrees of freedom. The mechanism can be completely immobilized by constraining the coordinates of some of the vertices to lie on fixed straight lines. The Slider Pinning problems asks for the minimum set of sliders that will pin a given mechanism. A particular degenerate case is to...

متن کامل

Rigidity of Frameworks and Applications , 12 th - 15 th July

s of the Talks Ciprian Borcea Minimally rigid periodic graphs We prove a rigidity theorem of Maxwell-Laman type for periodic frameworks in arbitrary dimension.

متن کامل

Rigid Components of Random Graphs

The planar rigidity problem asks, given a set of m pairwise distances among a set P of n unknown points, whether it is possible to reconstruct P , up to a finite set of possibilities (modulo rigid motions of the plane). The celebrated Maxwell-Laman Theorem from Rigidity Theory says that, generically, the rigidity problem has a combinatorial answer: the underlying combinatorial structure must co...

متن کامل

A Characterization of Generically Rigid Frameworks on Surfaces of Revolution

A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independ...

متن کامل

The Non-solvability by Radicals of Generic 3-connected Planar Laman Graphs

We show that planar embeddable 3-connected Laman graphs are generically non-soluble. A Laman graph represents a configuration of points on the Euclidean plane with just enough distance specifications between them to ensure rigidity. Formally, a Laman graph is a maximally independent graph, that is, one that satisfies the vertex-edge count 2v − 3 = e together with a corresponding inequality for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2010